Acta Crystallographica Section C
Crystal Structure

ISSN 0108-2701

A decanuclear oxomolybdenum $(\mathbf{V}, \mathbf{V I})$ cluster with 4-isopropylpyridine

Barbara Modec, ${ }^{\text {a* }}$ Jurij V. Brenčiča ${ }^{\text {a }}$ and Gerald Giester ${ }^{\text {b }}$

${ }^{\text {a }}$ Faculty of Chemistry and Chemical Technology, University of Ljubljana,
Aškerčeva 5, PO Box 537, 1000 Ljubljana, Slovenia, and ${ }^{\mathbf{b}}$ Institut für Mineralogie und Kristallographie, Universität Wien, Geozentrum, Althanstrasse 14, A-1090 Vienna, Austria
Correspondence e-mail: barbara.modec@guest.arnes.si

Received 2 November 2000
Accepted 13 November 2000
The title centrosymmetric cluster octakis(4-isopropylpyridineN)-di- μ_{4}-oxo-hexa- μ_{3}-oxo-octa- μ_{2}-oxo-decaoxooctamolybdenum(V)dimolybdenum(VI), $\left[\mathrm{Mo}_{10} \mathrm{O}_{26}\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}\right)_{8}\right]$, consists of ten Mo atoms connected together by bridging oxo groups. Pentavalent Mo atoms are linked into four $\mathrm{Mo}_{2}{ }^{\mathrm{V}}$ pairs by metal-metal single bonds with lengths of 2.5637 (6) and 2.6132 (6) \AA.

Comment

Recent years have witnessed a growing interest in the coordination chemistry of polyoxomolybdates (Khan \& Zubieta, 1995). A well known moiety in molybdenum(V) chemistry, the $\mathrm{Mo}_{2} \mathrm{O}_{4}{ }^{2+}$ unit, in which the metal centres participate in a metal-metal bond with an average length of 2.5-2.6 \AA, serves as the main building block in the formation of larger aggregates (Chae et al., 1993). Linkage of two, three, four or six units through oxygen-donor ligands has resulted, for example, in the tetranuclear complex $\left[\mathrm{Mo}_{4} \mathrm{O}_{6}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{Cl}_{4}\left(\mathrm{PMe}_{3}\right)_{2}\right]$ (Limberg et al., 1997), the hexanuclear moiety $\left[\mathrm{Mo}_{6} \mathrm{P}_{4} \mathrm{O}_{24}(\mathrm{OH})_{7}\right]^{5-}$, which has been identified as the basic structural unit of the molybdenum phosphate $\left(\mathrm{Et}_{4} \mathrm{~N}\right)_{6}\left[\mathrm{Na}_{14} \mathrm{Mo}_{24} \mathrm{P}_{17} \mathrm{O}_{97}(\mathrm{OH})_{31}\right]$-$x \mathrm{H}_{2} \mathrm{O}$ (Haushalter \& Lai, 1989), the cyclic octanuclear $\left[\mathrm{Mo}_{8}\left(\mu_{2}-\mathrm{O}\right)_{8} \mathrm{O}_{8}\left(\mu_{2}-\mathrm{OCH}_{3}\right)_{8}\right]$ framework found in $[(n-$ $\left.\left.\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}\right]_{2}\left[\mathrm{Mo}_{8} \mathrm{O}_{16}\left(\mathrm{OCH}_{3}\right)_{8}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]$ (Chen et al., 1988) or in $\left[\mathrm{Mo}_{8} \mathrm{O}_{16}\left(\mathrm{OCH}_{3}\right)_{8} \mathrm{Py}_{4}\right]$ (py is pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$; Modec, Brenčič, Rotar et al., 1998), and the dodecanuclear complex $\left[\mathrm{Mo}_{12} \mathrm{O}_{28}\left(\mathrm{OCH}_{3}\right)_{2} \mathrm{Cl}_{2}(3-\mathrm{MePy})_{8}\right]$ (3-MePy is 3-methylpyridine, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$; Modec et al., 2000), respectively. In this paper, we present the structure of the title complex, (I), which was obtained by the solvothermal reaction of $(\mathrm{PyH})_{2}\left[\mathrm{MoOCl}_{5}\right]$ with 4-isopropylpyridine in methanol. It belongs to a class of polynuclear oxomolybdenum(V, VI) compounds whose representatives are, for example, $\left(\mathrm{NBu}_{4}\right)_{4}\left[\mathrm{Mo}_{10} \mathrm{O}_{28}\left(\mathrm{SCH}_{2}-\right.\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{O}\right)_{2}\left(\mathrm{HOCH}_{3}\right)_{2}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{OH}$ (Liu et al., 1988), which consists of two $\mathrm{Mo}_{2}{ }^{\mathrm{V}}$ pairs and six $\mathrm{Mo}^{\mathrm{VI}}$ sites, $\left[\mathrm{Mo}_{8}(\mathrm{pz})_{6}\right.$ $\left.\mathrm{O}_{18}(\mathrm{pzH})_{6}\right] \cdot 2 \mathrm{pzH}\left(\mathrm{pzH}\right.$ is pyrazole, $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}$, and pz is pyrazolate, $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}{ }^{-}$; Ehlert et al., 1993), which contains three $\mathrm{Mo}_{2}{ }^{\mathrm{V}}$ pairs and two $\mathrm{Mo}^{\mathrm{VI}}$ sites, and $\left[\mathrm{Mo}_{5} \mathrm{O}_{11}\left(\mathrm{OCH}_{3}\right)_{4}{ }^{-}\right.$
$\left.\mathrm{py}_{4}\right] \cdot \mathrm{CH}_{3} \mathrm{OH}$ (Modec, Brenčič \& Leban, 1998), which consists of two $\mathrm{Mo}_{2}{ }^{\mathrm{V}}$ pairs and one $\mathrm{Mo}^{\mathrm{VI}}$ site.

The structure of (I), illustrated in Fig. 1, is seen to consist of discrete centrosymmetric $\left[\mathrm{Mo}_{10}\left(\mu_{4}-\mathrm{O}\right)_{2}\left(\mu_{3}-\mathrm{O}\right)_{6}\left(\mu_{2}-\mathrm{O}\right)_{8} \mathrm{O}_{10^{-}}\right.$ $\left.\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}\right)_{8}\right]$ moieties. Among the ten Mo atoms, eight are grouped into four $\mathrm{Mo}_{2}{ }^{\vee}$ pairs with short Mo-Mo distances $[\mathrm{Mo} 1-\mathrm{Mo} 2=2.6132$ (6) and Mo4-Mo5 = 2.5637 (6) \AA] and two (Mo3 and its symmetry equivalent) are Mo ${ }^{\text {VI }}$ centres. The 26 O atoms are of four distinct types, with ten coordinated as terminal ligands at distances of 1.683 (3) -1.694 (3) A. Eight doubly bridging O atoms are found at distances of 1.814 (3)2.067 (3) A, six adopt a triply bridging mode, with $\mathrm{O}-\mathrm{Mo}$ distances spanning the range 1.964 (3) -2.261 (3) \AA, and two (O7 and its symmetry equivalent) are μ_{4} ligands coordinated to Mo atoms with unsymmetrical distances ranging from 1.988 (2) to 2.641 (3) A.

A list of selected bond lengths and angles is given in Table 1. The hexavalent Mo atoms differ from their pentavalent counterparts with respect to the coordination environment, [MoO_{6}] geometry being achieved through ligation to one terminal, two doubly bridging, two triply bridging and one quadruply bridging O atom. Owing to the pronounced trans influence of the multiply bonded terminal oxygen, O3, the coordination geometry around Mo3 approaches the squarepyramidal limit, with a weakly interacting sixth ligand, O7. The Mo^{V} centres display an $\left[\mathrm{MoO}_{5} \mathrm{~N}\right]$ pseudo-octahedral geometry through coordination to oxo ligands and 4-isopropylpyridine, with two (an oxo group and the 4-isopropylpyridine) serving as terminal ligands. Nitrogen-donor ligands are coordinated to Mo atoms at an average distance of 2.230 (3) Å. Fig. 2 shows how the polyhedra are assembled.

The same structure was determined previously for [$\mathrm{Mo}_{10} \mathrm{O}_{26} L_{8}$] (L is 3-methylpyridine or 3,5-lutidine; Modec et al., 2000). The geometric parameters for all three compounds are nearly identical.

Figure 1
The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.

Figure 2
ATOMS (Dowty, 1993) representation of (I), showing the assembly of the polyhedra.

Experimental

A solution of $(\mathrm{PyH})_{2}\left[\mathrm{MoOCl}_{5}\right](428 \mathrm{mg}, 0.95 \mathrm{mmol})$ in methanol (5 ml) and 4-isopropylpyridine (5 ml) was heated in a sealed glass tube in an autoclave at 403 K for 76 h . Red crystals of (I) were obtained in low yield. Analysis calculated (found): C 32.78 (32.49), H 3.78 (3.20), $\mathrm{N} 4.78 \%(4.90 \%)$. IR data (nujol, cm^{-1}): 1618 (vs), 1314 (m), 1250 (w), 1228 (m), 1212 (w), 1070 (m), 1058 (m), 1031 (s), $978(v s), 958(v s), 939(s), 893(w), 867(w), 831(m), 796(w), 760(s)$, $741(s), 702(v s), 669(m), 651(w), 618(m), 582(w), 544(w), 517(s)$, 419 (w), 400 (w), 362 (w), 349 (w), 335 (w), 311 (m), 266 (w).

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Mo}_{10} \mathrm{O}_{26}\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}\right)_{8}\right]} \\
& M_{r}=2344.82 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=11.794(2) \AA \\
& b=20.179(4) \AA \\
& c=17.843(4) \AA \\
& \beta=107.78(3)^{\circ} \\
& V=4043.6(14) \AA^{3} \\
& Z=2
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.926 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 21096 \\
& \quad \text { reflections } \\
& \theta=2.10-29.55^{\circ} \\
& \mu=1.572 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& \text { Block, red } \\
& 0.11 \times 0.11 \times 0.11 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer ω scans
21096 measured reflections
11238 independent reflections
9113 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.030 \\
& \theta_{\max }=29.55^{\circ} \\
& h=-16 \rightarrow 16 \\
& k=-28 \rightarrow 28 \\
& l=-24 \rightarrow 24
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.092$
$S=1.069$
11238 reflections
495 parameters
H -atom parameters not refined

Table 1
Selected geometric parameters (\AA).

Mo1-O1	$1.689(3)$	Mo3-O8	$1.995(2)$
Mo1-O6	$1.949(3)$	Mo3-O11	$2.002(2)$
Mo1-O7	$1.997(2)$	Mo3-O7	$2.641(3)$
Mo1-O8	$2.091(2)$	Mo4-O4	$1.694(3)$
Mo1-O9	$2.215(3)$	Mo4-O13	$1.926(3)$
Mo1-N1	$2.243(3)$	Mo4-O9	$1.964(3)$
Mo1-Mo2	$2.6132(6)$	Mo4-O11	$1.996(2)$
Mo2-O2	$1.687(3)$	Mo4-N4	$2.241(3)$
Mo2-O6	$1.926(3)$	Mo4-O8	$2.261(3)$
Mo2-O7	$1.988(2)$	Mo4-Mo5	$2.5637(6)$
Mo2-O10	$2.067(3)$	Mo5-O5	$1.683(3)$
Mo2-O11	$2.207(3)$	Mo5-O13	$1.944(3)$
Mo2-N2	$2.210(3)$	Mo5-O9	$1.969(2)$
Mo2-Mo3	$3.0147(9)$	Mo5-O12	$2.056(3)$
Mo3-O3	$1.693(3)$	Mo5-N5	$2.226(3)$
Mo3-O12	$1.814(3)$	Mo5-O7	$2.277(3)$
Mo3-O10	$1.857(3)$		

Symmetry code: (i) $-x,-y, 1-z$.

Although the data were collected at 150 K , the C atoms of one aromatic ring, i.e. $\mathrm{C} 11-\mathrm{C} 15$, exhibited large values of their atomic displacement parameters. For some of the propyl C atoms, C16, C18 and C28 from another 4-isopropylpyridine ligand, disorder over two positions was suggested. Refinement with the aforementioned C atoms partially occupying two positions was not successful. The parameters of the disordered atoms are therefore subject to some systematic error. Consequently, a final difference Fourier map showed five relatively large electron-density peaks of $1.60,1.58,1.55$, 1.32 and $1.23 \mathrm{e}^{-3}$ at distances of $0.78,0.46,2.63,0.36$ and $0.86 \AA$ from atoms H16, H56, H12, C16 and C28, respectively. H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA)$ and were not refined.

Data collection: DENZO (Otwinowski \& Minor, 1997); cell refinement: $D E N Z O$; data reduction: $D E N Z O$; program(s) used to solve structure: SHELXS93 (Sheldrick, 1993); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1493). Services for accessing these data are described at the back of the journal.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Chae, H. K., Klemperer, W. G. \& Marquart, T. A. (1993). Coord. Chem. Rev. 128, 209-224.
Chen, Q., Liu, S. \& Zubieta, J. (1988). Angew. Chem. Int. Ed. Engl. 27, 17241725.

Dowty, E. (1993). ATOMS. Version 2.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Ehlert, M. K., Rettig, S. J., Storr, A., Thompson, R. C. \& Trotter, J. (1993). Inorg. Chem. 32, 5176-5182.
Haushalter, R. C. \& Lai, F. W. (1989). Angew. Chem. Int. Ed. Engl. 28, 743-746. Khan, M. I. \& Zubieta, J. (1995). Prog. Inorg. Chem. 43, 1-149.
Limberg, C., Büchner, M., Heinze, K. \& Walter, O. (1997). Inorg. Chem. 36, 872-879.
Liu, S., Sun, X. \& Zubieta, J. (1988). J. Am. Chem. Soc. 110, 3324-3326.
Modec, B., Brenčič, J. V., Golič, L. \& Daniels, L. M. (2000). Polyhedron, 19, 1407-1414.
Modec, B., Brenčič, J. V. \& Leban, I. (1998). Inorg. Chem. Commun. 1, 161163.

Modec, B., Brenčič, J. V., Rotar, R., Golič, L. \& Prout, K. (1998). Acta Cryst. C54, 1573-1575.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Sheldrick, G. M. (1993). SHELXL93 and SHELXS93. University of Göttingen, Germany.

